تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. وأسفرت أعمال جملة من الر ياضيين و الفيز يائيين فيمابعد خاصة نيوتن (Newton)
|
|
- Χρύσηίς Γλυκύς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 DERIVATION الاشتقاق من إنجاز : الأستاذ عادل بناجي 2 تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. Archimède) 22 ;278 مقترحا في هذا الصدد. وقد قدم أرخميدس وأسفرت أعمال جملة من الر ياضيين و الفيز يائيين فيمابعد خاصة نيوتن Newton) م) وليبنيتز Leibniz) ) م ) في تحديد عام لمماسات منحنيات دوال وتحديد سرعة جسم متحرك. كما نتج عن تقدم الحساب التفاضلي تطور لمفهوم الإشتقاق. ويرجع الفضل للعالم الر ياضي والفلكي الفرنسي افطالي الأصل لاغرانج Louis, Joseph 83) Lagrange de compte 736 م في إدخال كلمة " المشتقة " وفي وضع الترميز ) f الذي عرف كنهاية لمعدل التغير. نبذة عن عالم غوتفريد فيلهيلم من لايبنتز أيضا لايبنتز) الحديث لمبدأ انحفاظ الطاقة فيلسوف ألماني عالم طبيعة عالم ر ياضيات دبلوماسي مكتبي ومحامي. يرتبط اسم لايبنتز بالتعبير " دالة ر ياضية " 694) التي كان يصف بها كل كمية م ت ع ل قة ب منحنى مثل ميل المنحنى أ ونقطة معينة على المنحنى. يعتبر لايبنتز مع نيوتن أحد مؤسسي علم التفاضل و التكامل و بخاصة تطوير مفهوم التكامل و قاعدة الجداء كما طور المفهوم ذ. عادل بناجي الصفحة : adilbennaji204@gmail.com
2 بطاقة تقنية رقم : 02 ثانو ية : الفتح التأهيلية السنة الدراسية : الأستاذ : عادل بناجي المستوى : الثانية باكلور يا علوم تجريبية درس : الاشتقاق التذبير الزمني : 5 ساعات فقرات الدرس تذكير وإضافات العمليات على الدوال المشتقة الاشتقاق والاتصال مشتقة مركب دالتين مشتقة الدالة العكسية النهايات و الاتصال مفاهيم أساسية حول مفهوم الاشتقاق تطبيقات الاشتقاق رتابة دالة عددية - مطارف دالة عددية - المعادلة التفاضلية + ω 2 = 0 المكتسبات القبلية دراسة الدوال العددية حساب مشتقات الدوال الاعتيادية تحديد رتابة دالة انطلاقا من إشارة مشتقتها الكفاءات المستهدفة تحديد إشارة دالة انطلاقا من جدول تغيراتها أو من تمثيلها المبياني تحديد العدد المشتق في نقطة للدالة العكسية لدالة تحديد رتابة الدالة العكسية لدالة متصلة و رتيبة قطعا على مجال التوجيهات التربو ية الوسائل الديداكتيكية يتم التذكير بمفهوم الاشتقاق و تطبيقاته من خلال أنشطة متنوعة تبرز الهمية التي يكتسيها في الدراسة الموضعية و الشاملة للدوال المقررة و خاصة في التقريب المحلي لدالة وفي دراسة منحى تغيرات دالة على مجال و تحديد المطاريف ودراسة إشارة دالة أو متفاوتة جبرية على مجال... تتم صيانة مكتسبات التلاميذ حول الاشتقاق و النهايات من خلال دراسة أمثلة لدوال حدودية و دوال جذرية و دوال لاجذرية و دوال مثلثية سلسلة أنشطة - سلسلة تمارين - الكتاب المدرسي - ملخص المكتسبات السابقة ذ. عادل بناجي الصفحة : 2 adilbennaji204@gmail.com
3 أنشطة الدرس f h ) f ) 0 h h ثم استنتج أن f قابلة للاشتقاق في 2 و لتكن f الدالة العددية المعرفة بمايلي : 4 2 f ) = 2 و f ) f 2) 2 أحسب النهايتين 3 اعط معادلة مماس منحنى الدالة f في النقطة 2 نشاط 2 حدد 2) f و ) f f ) = 2 + ; f ) = 3 2 ; < نشاط 2 لتكن f الدالة العددية المعرفة بمايلي : أدرس قابلية اشتقاق f على اليسار وعلى اليمسن في ثم اول النتيجتين المحصل عليهما مبيانيا هل الدالة f قابلة للاشتقاق في 2 حدد تعبير معادلتي المماسين ) d T و ) g T حيث ) f T d ) : = f d ) ) + و ) f T d ) : = f g ) ) + 3 أنشئ ) f C و ) d T و ) g T و النقطة )) f M, في نفس المعلم المتعامد الممنظم ) j O; i, 4 نشاط 3 في كل حالة من الحالات التالية ادرس قابلية الدالة f على المجال I ثم حدد دالتها المشتقة f I = ]2,+ [ f ) = 3 8 I = R f ) = I = ]0,+ [ f ) = + I = R f ) = + 2) ) 2 نشاط 4 C f ) 0 0 C f ) يمثل الشكلان ) f C) و f C) جانبه على التوالي منحنيي دالة f و دالتها المشتقة f أتمم ملء الجدول التالي : المجال إشارة الدالة المشتقة f تغيرات الدالة f I = ] 2,0[ J = ]0,[ K = ],3 2 ذكر بالخاصية التي تربط اشارة الدالة f بتغيرات الدالة f ذ. عادل بناجي الصفحة : 3 adilbennaji204@gmail.com
4 نشاط 5 نعتبر الدالة f المعرفة على R بتمثيلها المبياني أسفله. C f ) 0 ماذا تمثل النقطتان )) f A, و )) f B, بالنسبة للدالة f 2 حدد ) f و ) f و ) f و ) f 3 حدد معادلتي مماسي منحنى الدالة f وانشأهما في نفش الشكل. ماذا تلاحظ نشاط 6 h) = و g ) = + و f ) = نعتبر الدوال f و g وh المعرفة على R+ بمايلي : + تحقق أن : h f = g 2 أحسب مشتقات الدوال f و g وh 3 قارن ) f و ) g [h)].h بالنسبة ل ]0,+ [ نشاط 7 نعتبر الدالة f المعرفة على [0,+ [ ب : 2 f ) = بين أن f تقابل من ] +,0] نحو مجال J يجب تحديده تحقق أن : + J) : f ) = 2 f ) بين أن f قابلة للاشتقاق على ] +, [ وأحسب ) 3 : f ) ) = تحقق أن : ],+ [) f ) f ) 4 adilbennaji204@gmail.com ذ. عادل الصفحة : 4 بناجي
5 h 0 f a + h) f a). h 0 h f a + h) f a) h 2 تذكير و إضافات. 2 اشتقاق دالة في نقطة لتكن f دالة عددية معرفة على مجال مفتوح I و a I f ) f a) = l أو = l a نقول إن f قابلة للإشتقاق في a إذا وجد عدد حقيقي l بحيث : a f ) f a) أو = = f a) a العدد l يسمى العدد المشتق للدالة f في a ونرمز له ب a) f ونكتب : a f a) إذا كانت الدالة f قابلة للإشتقاق في a فإن الدالة : a) f a) a) + f الدالة التآلفية المماسة للدالة f في النقطة a أو التقريب التآلفي للدالة f بجوار a) معادلة المماس للدالة f في النقطة a هي a): = f a) a) + f تعار يف تطبيقي تمرين أدرس قابلية اشتقاق الدالة f في 0 في كل حالة من الحالات التالية : 0 = f ) = = f ) = = f ) = تطبيقي تمرين باستعمال مفهوم العدد المشتق أحسب النهايتين التاليتين : cos) 2 π π ) a a a > 0) a 4 3 a 3 ذ. عادل بناجي الصفحة : 5 adilbennaji204@gmail.com
6 تطبيقي تمرين لتكن f الدالة العددية المعرفة ب : f ) = 3 + بين أن f قابلة للاشتقاق في النقطة 0 حدد التقريب التالفي للدالة f بجوار اعط قيمة مقربة للعددين و الاشتقاق على اليمين - الاشتقاق على اليسار لتكن f دالة عددية معرفة على مجال من نوع ]α α) > 0,a] a +. نقول إن f قابلة للإشتقاق على اليمين في a إذا وجد f ) f a) أو = f >a a d a) : ونكتب f d a... f ) f a). = l >a عدد حقيقي l بحيث : a a العدد l يسمى العدد المشتق للدالة f على اليمين في a ونرمز له ب a) f ) f a) = f a + a d a) لتكن f دالة عددية معرفة على مجال من نوع [a α) > 0 a[,α. نقول إن f قابلة للإشتقاق على اليسار في a إذا وجد f ) f a) أو = f <a g a a) : ونكتب f g a f ) f a). = l <a عدد حقيقي l بحيث : a a العدد l يسمى العدد المشتق للدالة f على اليسار في a ونرمز له ب a) f ) f a) = f a g a a) تعريف خاصية لتكن f دالة عددية معرفة على مجال مفتوح I و a. I نقول إن f قابلة للاشتقاق في a إذا وفقط غذا كانت قابلة للإشتقاق على اليمين و على اليسار في a و a) f g a) = f d تطبيقي تمرين أدرس قابلية اشتقاق الدالة f على اليمين أو السار) في 0 في كل حالة من الحالات التالية : 0 على اليمين في = 0 f ) = 0 على اليمين في = 2 f ) = على اليسار في = f ) = 2 3 ذ. عادل بناجي الصفحة : 6 adilbennaji204@gmail.com
7 3. 2 قابلية الاشتقاق و التأو يل الهندسي النهاية استنثاج التأويل الهندسي للمنحنى : ) f C) يقبل... a معامله الموجه هو A 0, f 0 )) f قابلة مماسا في النقطة للاشتقاق في A 0, f 0 )) 2 مماسا أفقيا في النقطة a معامله الموجه هو A 0, f 0 )) f قابلة 3 نصف مماس على اليمين في النقطة 0 f ) f 0 ) = a f ) f 0 ) = f ) f 0 ) = a 0 0 f ) f 0 ) = للاشتقاق على A 0, f 0 )) 4 نصف مماس أفقي على اليمين في النقطة يمين )) 0 A 0, f موجه نحو الأسفل f غير قابلة 5 نصف مماس عمودي على اليمين في النقطة 0 للاشتقاق على + A موجه نحو الأعلى a معامله الموجه هو A A موجه نحو الأعلى 0, f 0 )) 6 نصف مماس عمودي على اليمين في النقطة يمين 0 A + 0 0, f 0 )) f قابلة 7 نصف مماس على اليسار في النقطة 0 للاشتقاق على 0, f 0 )) 8 نصف مماس أفقي على اليسار في النقطة يسار 0 0, f 0 )) f غير قابلة 9 نصف مماس عمودي على اليسار في النقطة للاشتقاق على )) 0 A 0, f موجه نحو الأسفل 0 نصف مماس عمودي على اليسار في النقطة يسار 0 0 f ) f 0 ) = 0 f ) f 0 ) = + 0 f ) f 0 ) 0 = a 0 f ) f 0 ) = f ) f 0 ) = 0 f ) f 0 ) = الشكل 9 الشكل 7 الشكل 5 الشكل 3 الشكل الشكل 0 الشكل 8 الشكل 6 الشكل 4 الشكل 2 ذ. عادل بناجي الصفحة : 7 adilbennaji204@gmail.com
8 4. 2 الاشتقاق على مجال - الدالة المشتقة... تعار يف نقول إن f قابلة للاشتقاق على مجال مفتوح I إذا كانت قابلة للاشتقاق في كل نقطة من I نقول إن f قابلة للاشتقاق على المجال المغلق [a,b] إذا كانت قابلة للاشتقاق في كل نقطة من المجال المفتوح ]a,b[ وقابلة للاشتقاق على اليمين في a وقابلة للاشتقاق على اليسار في. b الدالة المعرفة ب ) f تسمى الدالة المشتقة للدالة f ويرمز لها بالرمز f إذا كانت f قابلة للاشتقاق على I فإن دالتها المشتقة تسمى الدالة المشتقة الثانية للدالة f ونرمز لها بالرمز " f الدالة المشتقة لبعض الدوال الاعتيادية - العمليات على الدوال المشتقة الجدول التالي يلخص مشتقات بعض الدوال الإعتيادية : f تعريف Dمجموعة f الدالة D f f مجموعة تعريف f الدالة المشتقة f D f = R f ) = 0 D f = R f ) = a D f = R f ) = D f = R f ) = D f = R f ) = n n D f = R f ) = n ;n N {}) D f = R f ) = n n D f = R f ) = n ;n Z {}) D f = ]0,+ [ f ) = 2 D f = [0,+ [ f ) = D f = R f ) = 2 D f = R f ) = D f = R f ) = cos) D f = R f ) = sin) D f = R f ) = sin) D f = R f ) = cos) π 2 + kπ;k Z) f ) = + t an 2 ) = cos 2 ) D g /g ) > 0 f ) = g ) 2 g ) π + kπ;k Z) 2 D g /g ) 0 f ) = t an) f ) = g ) D f = R f ) = acosa + b) D f = R f ) = sina + b) D f = R f ) = asina + b) D f = R f ) = cosa + b) D f = a + b π ) + kπ;k Z) 2 f ) = a + t an 2 a + b) a + b π + kπ;k Z) f ) = t ana + b) 2 { D f = R d } a b ;c 0 f c d { ) = c c + d) 2 D f = R d } ;c 0 f ) = a + b c c + d ذ. عادل بناجي الصفحة : 8 adilbennaji204@gmail.com
9 ... خاصية العمليات على الدوال المشتقة إذا كانت f و g دالتين قابلتين للا شتقاق عل مجال I و λ R فإن : الدوال f + g و f g و λf دوال قابلة للاشتقاق على λf ) = λf و f g ) = f g + f g و f + g ) = f + g : ولدينا I I قابلتان للاشتقاق على f g و g إذا كانت f و g دالتين قابلتين للا شتقاق عل مجال I و g لاتنعدم على I فإن : الدالتين f g ) f g f g و = ) g = g 2 g g 2 ولدينا : خواص... R { π 2 كل دالة حدودية قابلة للاشتقاق على R كل دالة جذرية قابلة للاشتقاق على كل مجال ضمن مجموعة تعريفها 2 الدالتين cos) و sin) قابلتان للاشتقاق على R 3 الدالة an) t قابلة للاشتقاق على كل مجال ضمن مجموعة تعريفها {Z + kπ/k 4 الدالة قابلة للاشتقاق على ]0,+ [ 5 تطبيقي تمرين أدرس قابلية اشتقاق الدالة f ثم حدد دالتها المشتقة في الحالات التالية : f ) = f ) = 2 + cos) 4 f ) = ) 5 f ) = رتابة دالة واشارة مشتقتها خاصية لتكن f دالة قابلة للاشتقاق على مجال I إذا كانت f موجبة ) قطعا على I فإن الدالة f تزايدية قطعا على I إذا كانت f سالبة قطعا على I فإن الدالة f سالبة ) قطعا على I إذا كانت f منعدمة على I فإن الدالة f ثابتة على I ذ. عادل بناجي الصفحة : 9 adilbennaji204@gmail.com
10 7. 2 مطارف دالة قابلة للاشتقاق خاصية لتكن f دالة قابلة للاشتقاق على مجال مفتوح I و 0 عنصرا من I إذا كانت f قابلة للاشتقاق في 0 وتقبل مطراف في النقطة 0 فإن = 0 ) 0 f إذا كانت f تنعدم في 0 و تغير اشارتها فإن ) 0 f ) مطراف للدالة f تطبيقي تمرين أدرس رتابة الدالة f ومطارفها إذا وجدت في الحالات التالية : f ) = 4 f ) = f ) = f ) = f ) = f ) = 2 3) الاتصال و الاشتقاق خاصية لتكن f دالة عددية معرفة على مجال مفتوح I و a I إذا كانت f قابلة للاشتقاق في a فإن f متصلة في. a ملاحظة عكس هذه الخاصية غير صحصيح مثال مضاد : لتكن f الدالة العددية المعرفة على R ب : f ) = لدينا f متصلة في 0 لكن f غير قابلة للاشتقاق في 0 لأن 0) g f d 0) f نتيجة إذا كانت f قابلة للاشتقاق على مجال I فإن f متصلة على I ذ. عادل بناجي الصفحة : 0 adilbennaji204@gmail.com
11 3 مشتقة مركب دالتين لتكن f دالة معرفة على مجال I و g دالة معرفة على مجال J بحيث f I) ) J إذا كان a عنصرا من المجال I بحيث f قابلة للاشتقاق في a و g قابلة للاشتقاق في a) f فإن الدالة g f قابلة للاشتقاق في a و لدينا : ) g f ) ) = g f )) f إذا كانت f قابلة للاشتقاق على مجال I و g قابلة للاشتقاق على ) I) f فإن الدالة g f قابلة للاشتقاق على I و لدينا : : g f ) ) = g f )) f ) I ) خاصية نتيجة لتكن f دالة قابلة للاشتقاق على مجال I I على f 0) f )) = f ) 2 f ) n N ) f n )) = n f )f n ) مثال لنحسب f و g مشتقتي الدالتين : + 4 f ) = sin 2 و ) g ) = t an g ) = t an )) = ) t an ) = 2 + t an2 )) g ) = 2 + t an2 )) لدينا : f ) = sin )) = ) sin ) = 2 4) cos ) f ) = 2 4) cos ) 4 مشتقة الدالة العكسية ذ. عادل بناجي الصفحة : adilbennaji204@gmail.com
12 لتكن f دالة متصلة ورتيبة قطعا على مجال. I إذا كان a عنصرا من المجال I بحيث f قابلة للاشتقاق في a و 0 a) f فإن الدالة العكسية f قابلة للاشتقاق في a) f f ) f a)) = ولدينا : a) f إذا كانت f قابلة للاشتقاق على مجال I بحيث دالتها المشتقة لا تنعدم في ) I) f فإن الدالة العكسية f قابلة للاشتقاق f I )) f ) ) = f f )) على المجال ) I f ولدينا : خاصية تطبيقي تمرين نعتبر الدالة العددية f المعرفة على [,+ [ ب : f ) = 2 بين أن f تقبل دالة عكسية عاى مجال J يجب تحديده نحو ] +,] 2 حدد ) f لكل من J 3 أحسب 2) f و استنتج 3) ) f لتكن f دالة موجبة قطعا و قابلة للاشتقاق عل مجال I و N n و Q r حسب الخاصية السابقة نستنثج مايلي : g ) = الدالة مجال قابلية الاشتقاق الدالة المشتقة ) n = n n ]0,+ [ قابلة للاشتقاق على f f ) = n f ) = r ) = r r ]0,+ [ قابلة للاشتقاق على f f ) = r f ) = f ) ) g ) = n f ) r ) f )) = r f ) n I قابلة للاشتقاق على g g ) = n f ) r ) r f )) I قابلة للاشتقاق على g g ) = f ) نتائج ذ. عادل بناجي الصفحة : 2 adilbennaji204@gmail.com
13 جدول بعض الأخطاء الشائعة الخطأ أو الصعوبة مصدر الخطأ سببه بعض سبل المعالجة ذ. عادل بناجي الصفحة : 3 adilbennaji204@gmail.com
14 سلسلة تمارين درس : النهايات و الإتصال التمرين 0 نعتبر f الدالة العددية المعرفة على ] +,0] بمايلي : f ) = 2 أحسب ) f + 2 أدرس قابلية اشتقاق الدالة f على اليمين في 0 لكل > 0 f ) = + ) 3 بين أن : 4 اعط جدول تغيرات الدالة f 5 حدد معادلة المستقيم المماس للمنحنى ) f C) في النقطة f ) = ذات الأفصول = 4 0 التمرين 02 نعتبر الدالة العددية f المعرفة بمايلي : أحسب ) f 2 اعط جدول تغيرات الدالة f 3 أدرس قابلية اشتقاق f على اليسار في 2 ثم اعط تأويلا هندسيا للنتيجة المحصل عليها 4 أحسب ) f التمرين 05 نعتبر الدالة العددية f المعرفة بمايلي : f ) = ; f ) = ) 2 ; < بين أن f متصلة في النقطة f في ثم اعط تأويلا هندسيا أدرس قابلية اشتقاق 2 للنتيجة المحصل عليها 3 أحسب ) f التمرين 06 نعتبر الدالة العددية f المعرفة بمايلي : 2 f ) = حدد D f ثم نهايتي f عند + و التمرين 03 نعتبر الدالة العددية f المعرفة بمايلي : 4 3 f ) = حدد D f مجموعة تعريف الدالة f 2 أدرس قابلية اشتقاق f على اليمين في ثم اعط تأويلا هندسيا للنتيجة المحصل عليها 3 أحسب ) f التمرين 04 نعتبر الدالة العددية f المعرفة بمايلي : 2 أدرس قابلية اشتقاق f على اليمين في 0 و على اليسار في 2 ثم اعط تأويلا هندسيا للنتيجتين المحصل عليهما 3 ا. أحسب ) f ب. اعط جدول تغيرات الدالة f التمرين 07 نعتبر الدالة العددية f المعرفة على ]0,2] = I بمايلي : + f ) = 2 4 أحسب ) f لكل من I 2 بين أن f تقبل دالة عكسية f معرفة على مجال J يجب تحديده ) 2 f ) = 2 4) حدد D f مجموعة تعريف الدالة f 2 أدرس قابلية اشتقاق f على اليمين في ثم اعط تأويلا 3 أحسب ) f وتحقق أن الدالة f قابلة للاشتقاق في f ) ) 4 ثم حدد هندسيا للنتيجة المحصل عليها ذ. عادل بناجي الصفحة : 4 adilbennaji204@gmail.com
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
Διαβάστε περισσότεραالا شتقاق و تطبيقاته
الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................
Διαβάστε περισσότερα- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
Διαβάστε περισσότερα( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
Διαβάστε περισσότερα- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم
تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز
Διαβάστε περισσότερα( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
Διαβάστε περισσότερα( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
Διαβάστε περισσότεραAy wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns
- : 05 06 : عموميات حول الدوال العددية من إنجاز : الأستاذ عادل بناجي تقديم تمتد البدايات الأولى لفكرة الدالة إلى العهد البابلي حيث ظهرت في الجداول العددية التي كانوا ينجزونها لمقابلة العدد بمربعه أو بمقلوبه
Διαβάστε περισσότερα( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
Διαβάστε περισσότερα( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
Διαβάστε περισσότεραتمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
Διαβάστε περισσότεραالتمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.
التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين
Διαβάστε περισσότεραTronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6
1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا
Διαβάστε περισσότερα( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
Διαβάστε περισσότεραمادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
Διαβάστε περισσότεραLe travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
Διαβάστε περισσότεραاألستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
Διαβάστε περισσότεραتمارين توازن جسم خاضع لقوتين الحل
تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية
Διαβάστε περισσότεραيط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
Διαβάστε περισσότερα( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
Διαβάστε περισσότερα[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
Διαβάστε περισσότερα( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
Διαβάστε περισσότερα-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
Διαβάστε περισσότεραبحيث ان فانه عندما x x 0 < δ لدينا فان
أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x
Διαβάστε περισσότερα( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (
المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط
Διαβάστε περισσότεραمتارين حتضري للبكالوريا
متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا
Διαβάστε περισσότεραإسالم بوزنية ISLEM BOUZENIA الفهرس
ISLEM إسالم بوزنية إسالم بوزنية ISLEM BOUZENIA ISLEM إسالم بوزنية الفهرس مقدمة... الدوال العددية... ص 1 كثيرات الحدود... ص 11 االشتقاقية...ص 11 تطبيقات االشتقاقية...ص 12 فرض أول للفصل األول...ص 33 فرض
Διαβάστε περισσότεραتايضاير و مولع يئاهن Version 1.1 اي ل
ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )
Διαβάστε περισσότερα1/ الزوايا: المتت امة المتكاملة المتجاورة
الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:
Διαβάστε περισσότερα)الجزء األول( محتوى الدرس الددراتالمنتظرة
األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية
Διαβάστε περισσότεραالتاسعة أساسي رياضيات
الرياضيات المهدي بوليفة الدرس الت اسع www.monmaths.com التاسعة أساسي رياضيات التعيين في المستوي جذاذة التلميذ محتوى الدرس 1 1. أنشطة إستحضاري ة... 4 8 مسقط نقطة على مستقيم وفقا لمنحى معطى... تعيين نقطة
Διαβάστε περισσότεραلجھة... نيابة... دفتر النصوص األستاذ : ...
المملكة المغربية وزارة التربية الوطنية و التعليم العالي و البحث العلمي لجھة... نيابة... الثانوية التأھيلية... الا كاديمية الجهوية للتربية و التكوين دفتر النصوص مادة الرياضيات بالجذع المشترك العلمي رقم
Διαβάστε περισσότεραOH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5
الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:
Διαβάστε περισσότεραثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6
ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة
Διαβάστε περισσότερα() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن
تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل
Διαβάστε περισσότεραرباعيات األضالع سابعة أساسي. [www.monmaths.com]
سابعة أساسي [www.monmaths.com] الحص ة األولى رباعيات األضالع القدرات المستوجبة:.. المكتسبات السابقة:... المعي ن- المستطيل ) I المرب ع الرباعي هو مضل ع له... 4 للرباعي... 4 و... 4 و... نشاط 1 صفحة 180 الحظ
Διαβάστε περισσότεραالتاسعة أساسي رياضيات
الرياضيات Mehdi boulifa الدرس الثاني www.monmaths.com التاسعة أساسي رياضيات جذاذة التلميذ محتوى الدرس 1. أستحضر المكتسبات السابقة. الكتابات العشرية لعدد كسري نسبي 3. األعداد الحقيقية 4. تدريج مستقيم بواسطة
Διαβάστε περισσότεραتصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين
تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع
Διαβάστε περισσότερα: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )
التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي
Διαβάστε περισσότεραءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I
الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:
Διαβάστε περισσότεραالتتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
Διαβάστε περισσότεραΑκαδημαϊκός Λόγος Εισαγωγή
- سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا
Διαβάστε περισσότεραقوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E
ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.
Διαβάστε περισσότεραفرض محروس رقم 1 الدورة 2
ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في
Διαβάστε περισσότεραدروس رياضيات - أولى ج م علوم
الجمهور ية الجزائر ية الديمقراطية الشعبية وزارة التربية الوطنية مديرية التربية لولاية الوادي ثانوية غربي بشير - حاسي خليفة دروس رياضيات - أولى ج م علوم إعداد: الأستاذ حريز خالد كتب ب L A TEX yharizkhaled9@gmail.com
Διαβάστε περισσότεραDipôle RL. u L (V) Allal mahdade Page 1
ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة
Διαβάστε περισσότεραق ارءة ارفدة في نظرية القياس ( أ )
ق ارءة ارفدة في نظرية القياس ( أ ) الفصل األول: مفاهيم أساسية في نظرية القياس.τ, A, m P(Ω) P(Ω) فيما يلي X أو Ω مجموعة غير خالية مجموعة أج ازئها و أولا:.τ τ φ τ الحلقة: τ حلقة واتحاد أي عنصرين من وكذا
Διαβάστε περισσότεραالمستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.
الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل
Διαβάστε περισσότεραالمادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph
8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol
Διαβάστε περισσότερα: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq
تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة
Διαβάστε περισσότεραالمستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH
8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول
Διαβάστε περισσότεραاستثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة.
فيزياء درس 3 الجدع المشترك الكفايات المستهدفة معرفة مفهوم معلم الفضاء ومعلم الزمن تعيين مسار نقطة من متحرك في معلم محدد حساب السرعة المتوسطة استعمال العلاقة التقريبية لحساب السرعة اللحظية - ms والعكس إلى
Διαβάστε περισσότεραأسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
Διαβάστε περισσότεραالدور المحوري لسعر الفائدة: يشكل حلقة وصل بين سوقي السلع والنقود حيث يتحدد سعر الفائدة في سوق
: توازن سوقي السلع والنقود مقدمة: نحصل على نموذج الطلب الكينزي المطور )نموذج )/ عن طريق إدخال سوق النقود للمعالجة وتطوير دالة االستثمار لتعكس العالقة العكسية بين االستثمار وسعر الفائدة مع بقاء السعر ثابت.
Διαβάστε περισσότεραمنتديات علوم الحياة و الأرض بأصيلة
www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة
Διαβάστε περισσότεραمثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع
- هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.
Διαβάστε περισσότεραالتفسير الهندسي للمشتقة
8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى
Διαβάστε περισσότεραالمادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V
8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على
Διαβάστε περισσότεραالموافقة : v = 100m v(t)
مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة
Διαβάστε περισσότεραjamil-rachid.jimdo.com
تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:
Διαβάστε περισσότεραبحيث = x k إذن : a إذن : أي : أي :
I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها
Διαβάστε περισσότεραتصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي
Διαβάστε περισσότερα{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ...
مبادئ في الحسابيات ( c c 5--9-5-4-- ( ( α r α α α α {,,,,4,5,,7,8,9 } αrαr α α α ( : α α α α {,,4,,8} / α + α + α + + αr 4 /αα { } r r 4 α,5 5 9 / α + α + α + + αr 9 / (α + α + α + ( α + α + α + αα {,
Διαβάστε περισσότεραدئارلا óï M. R D T V M + Ä i e ö f R Ä g
الائد óï D T V M i ö لا R Ä f Ä + e g بلا بلا لا ب اإلحتمال إحتمال عدم وقوع ا ل ا = ١ ل ا ١ ن ) ا @ @ * فضاء العينة : ھو مجموعة جميع النواتج إحتمال وقوع ا فقط وقوع ب وقوع ا و عدم @ ل ا ب إحتمال ل ا ب =
Διαβάστε περισσότεραحركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
Διαβάστε περισσότεραالمواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. (كالصواريخ و الطائرات و السفن و غيرها) يحافظ على إستقرار
بسم اللهجلال الحاج الرحمن عبدالرحيم يشرح المقال هذا بعض أهم المفاهيم و المواضيع النظرية للتحكم هذه المفاهيم و المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. تظهر أهمية
Διαβάστε περισσότεραجمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف
جمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف الدكتور مهدي صادق عباس الدكتور طارق شعبان رجب احلديثي حسام علي حيدر محمد عبد الغفور اجلواهري سعد محمد حسني البغدادي
Διαβάστε περισσότεραالوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A
التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل
Διαβάστε περισσότεραعرض المنشأة في األجل القصير الفصل العاشر
عرض المنشأة في األجل القصير الفصل العاشر أولا: مفهوم المنافسة الكاملة وجود عدد كبير من البائعين والمشترين, تجانس السلع. حرية الدخول والخروج من السوق. توافر المعلومات الكاملة للجميع. فالمنشأه متلقية للسعر
Διαβάστε περισσότεραا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا
الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك
Διαβάστε περισσότεραمق اس الر اض ات دروس وتطب قات للسنة األولى تس ر السداس األول من إعداد األساتذة: بن جاب هللا الطاهر السنة الجامع ة:
جامعة العق د الحاج لخضر - باتنة كل ة العلوم اإلقتصاد ة والتجار ة وعلوم التس ر قسم التس ر I دروس وتطب قات مق اس الر اض ات للسنة األولى تس ر السداس األول من إعداد األساتذة: د. د. أ. بركات الخ ر بوض اف نع
Διαβάστε περισσότεραأولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي:
المدرس: محم د سيف مدرسة درويش بن كرم الثانوية القوى والمجاالت الكهربائية تدريبات الفيزياء / األولى أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي: - شحنتان نقطيتان متجاورتان القوة المتبادلة بينهما )N.6(.
Διαβάστε περισσότεραامتحان الثلاثي الثاني لمادة العلوم الفيزياي ية
ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت
Διαβάστε περισσότεραتقريب الدوال العقدية من فضاء ليبيغ الموزن( V L p,γ) على منحنيات كارلسون
مجلة جامعة تشرين للبحوث والد ارسات العلمية - سلسلة العلوم األساسية المجلد )73( العدد )( 52 Tishree Uiversity Joural for Research ad Scietific Studies - Basic Scieces Series Vol. (73) No. () 52 تقريب الدوال
Διαβάστε περισσότεραالوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
Διαβάστε περισσότεραبا نها خماسية حيث: Q q الدخل. (Finite Automaton)
الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها
Διαβάστε περισσότερα1-1. تعاريف: نسم ي 2-1. أمثلة: بحيث r على النحو التالي: لنأخذ X = Z ولنعرف عليها الدالة 2. عدد طبيعي فردي و α عدد صحيح موجب. وسنضع: =
أوال : الفضاءات المتري ة ) Spaces ( Metric 1-1. تعاريف: لتكن X مجموعة غير خالية ولتكن: + R d X X دالة حقيقي ة بمتغيرين. (x, y) d(x, y) نسمي d نصف مسافة )شبه مسافة ( على X إذا حق قت الشروط التالية أيا كانت,x,y
Διαβάστε περισσότεραوزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/5/1 التاريخ : قسم : السنة الثالثة علوم تجريبية االمتحان التجرييب لشهادة البكالوريا يف مادة العلوم الفيزيائية 3 المدة : 15/14 السنة الدراسية
Διαβάστε περισσότερα**********************************************************
اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8
Διαβάστε περισσότεραdu R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
Διαβάστε περισσότεραمنتديات علوم الحياة و الأرض بأصيلة
الطاقة الحرارية -الإنتقال الحراري Energie thermique--transfert thermique I -الإنتقال الحراري 1 -تعريف الإنتقال الحراي هو انتقال الطاقة بالحرارة من جسم ساخن )أو مجموعة ساخنة( الى جسم بارد )أو مجموعة باردة
Διαβάστε περισσότεραالتحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي
الدرس 03 :تناقص النشاط اإلشعاعي التحوالت ت النووية إعداد األستاذ : معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال
Διαβάστε περισσότεραالوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran
GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب
Διαβάστε περισσότεραتصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية
مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل
Διαβάστε περισσότερα2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :
اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب
Διαβάστε περισσότεραدورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات
Διαβάστε περισσότεραالكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
Διαβάστε περισσότερα02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = .
التطورات المجال بةةةة الرتي الوحدة النووية التحولات ر ت ر ت ع المستوى رقم الدرس b عددان حقيقيان i a 7 الا ساس النبيري i y ] y [ y y حيث قبلية مآتسبات الا سية الدالة b أ شآلها f a معرفة في المجال [ - ]
Διαβάστε περισσότεραتعلي ا عام مكونا ال وضو
الصفح المركز ال طني ل ت ي اامتحانا الت جيه اامتحا الوطني ال وحد للبكالوريا الدورة ااستدراكية 5 الموضوع R المادة الرياضيا مدة اإنجاز الشعب أ المس شعب الع التجريبي بمسالك ا شعب الع التكن ل جيا بمس كي ا المعامل
Διαβάστε περισσότεραقانون فارداي والمجال الكهربائي الحثي Faraday's Law and Induced - Electric Field
قانون فارداي والمجال الكهربائي الحثي Faraday's Law and Induced - Electric Field 3-3 الحظنا ان تغيير الفيض المغناطيسي يولد قوة دافعة كهربائية حثية وتيار حثي في الدائرة وهذا يؤكد على وجود مجال كهربائي حثي
Διαβάστε περισσότεραالوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم
المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف
Διαβάστε περισσότερα1/7
I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و
Διαβάστε περισσότεραالتطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =
-i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب
Διαβάστε περισσότερα١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥
ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية
Διαβάστε περισσότερα8. حلول التدريبات 7. حلول التمارين والمسائل 3. حلول المراجعة 0. حلول االختبار الذاتي
. حلول التدريبات نخة الطالب.... حلول التمارين والمائل. حلول المراجعة. حلول االختبار الذاتي 1 ائلة الوزارة حب الدر لالتفار ت )411( اكاديمية نوبل...مركز الخوارزمي - البوابة الشمالية لجامعة اليرموك لمزيد
Διαβάστε περισσότεραتقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH
اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A
Διαβάστε περισσότεραنصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول "اضغط هنا" ملاحظة هامة
1 نصيحة لك أخي الطالب ننصحك وبشدة قبل الإطلاع على الحلول أن تقوم بالمحاولة بحل كل سؤال بنفسك أنت! ولاتعتمد على أي حل آخر, فجميع الحلول لنا أو لغيرنا تحتمل الخطأ والصواب وذاك لتحقق أكبر فائدة بإذن هللا,
Διαβάστε περισσότεραH H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/
الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال
Διαβάστε περισσότεραارسم م ثل ث ا قائم الزاوية.
أ ب - 1 - مثلث قائم - الزاوية تذكير: في الوحدة األولى في الفصل التاسع تعل منا عن المستطيل الذي فيه أربع زوايا قائمة ھو مستطيل. وعر فنا أن الشكل الرباعي زاوية قائمة ھي زاوية مقدارھا 90 الھندسة كما في الرسم
Διαβάστε περισσότερα